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ABSTRACT. We use the specialization homomorphism for the birational automorphism group to study
finite order birational automorphisms. For a family of varieties over a DVR, we prove that a birational
automorphism of order coprime to the residue characteristic cannot specialize to the identity. As an
application, we show that very general #-dimensional hypersurfaces of degree d > 5[(n + 3)/6] have no
finite order birational automorphisms.

The birational automorphism group of a variety X—denoted Bir(X )—is one of the most natural
birational invariants associated to X. For X = P¢, the Cremona group Cr,(C) = Bir(P¢) is an object
of classical and modern interest, and it is extremely interesting and complicated when n > 2. Beyond
the case of projective space, it is natural to study the birational automorphism group of a smooth
degree d hypersurface X c PZ*!. In the general type case, if n > 2 and d > n + 3, then Ky is ample
and Matsumura [15] showed that Bir(X) is equal to the automorphism group Aut(X). If d =z +2, in
which case X is Calabi-Yau (with Picard rank 1 if » > 3), then again Bir(X) = Aut(X) [17] (see also
[13, Lem A.1]). However, if 4 < n + 1, in which case X is Fano, very little is known about birational
automorphisms in general once n > 4.

The most striking known result is the case of degree d = n +1 Fano hypersurfaces. To briefly
summarize, there has been a great deal of work by many authors—including Fano, Segre, Iskovskikh,
Manin, Pukhlikov, Corti, Cheltsov, de Fernex, Ein, Mustatd, and Zhuang—to show that if n > 3
and 4 = n + 1, then any such smooth X is birationally superrigid. As a consequence of their work,
Bir(X) = Aut(X) (see [11] for a survey of the main ideas that were developed over time). In the case
d = n, Pukhlikov used similar techniques to show that such hypersurfaces also satisfy Bir(X) = Aut(X)
once n > 14 [20, Cor. 1]. For a smooth hypersurface X, having Bir(X) = Aut(X) places strong
constraints on the groups, as shown by Matsumura and Monsky [16, Thm. 2 and Thm. 5]: (1) if
n>2 and d > 3 (excluding the case (n,d) = (2,4)), then Aut(X) is naturally identified with a finite
subgroup of Aut(P~) = PGL,45(C), and (2) if n > 2, d > 3, and X is very general, then Aut(X) is
trivial. There seem to be few known restrictions on Bir when d < n.

We first prove a result about specializing finite order elements in the birational automorphism group
(Proposition 2.1). For a family of varieties over a complex curve, this shows that a nontrivial finite
order birational automorphism cannot specialize to the identity on the central fiber. We apply our
result to hypersurfaces, but we believe that this specialization method will also be useful for studying
the birational automorphism groups of other varieties.
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By degenerating to a reducible hypersurface, our result will imply that if a very general non-ruled
degree d hypersurface has no p-torsion in its birational automorphism group, then the same also holds
in degree d + 1. By degenerating to positive characteristic—following the work of Kollar [9]—we can
control the torsion in Bir(X) for certain hypersurfaces in the Fano range.

Theorem A. Let p be a prime and let n and d be integers; if p = 2 further assume that n is even. Let
X < PE be a very general hypersurface. If d > p [Z—ﬁ], then any finite order element in Bir(X') has order p”
for some 1.

When d > n + 2, Theorem A is well known as Kx is ample or trivial. When d =z +1, or when d = n
and n > 14, we use the known results on index one and two Fano hypersurfaces. So our contribution
to Theorem A is for Fano hypersurfaces of degree d < n.

We achieve the largest range of degrees in which we can apply Theorem A by choosing the smallest

primes. This gives the following corollary.

Corollary B. Let X c PE be a very general degree d hypersurface. If either

(1) d > 3["22] and n is even, or
(2) d> 5[”%3] and n is odd,

Then Bir(X') has no elements of finite order.
The table below places our results in the context of previous work for some values of (7,d). The

number 2 means that any finite order element in Bir(X ) has order a power of 2 (possibly order 1) as
a result of Theorem A, and similarly for 3.
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Restricting the possible orders of torsion elements places strong restrictions on the birational auto-
morphism group. Since the Cremona group contains p-torsion for any p, Theorem A with p = 2 if n is
even and p = 3 if n is odd implies that Bir(X) £ Cr,(C) if d > 2[ %3] for n even and d > 3[%3] for n
odd. Remarkably, Cantat proved Bir(X) # Cr,(C) whenever X is any irrational variety [2, Thm. C].

Remark 0.1. The parity assumption on # in Theorem A comes from studying the singularities of
odd dimensional double covers of hypersurfaces in characteristic 2 [5, Thm. C]. At the moment, we
cannot give an explicit resolution in this case.
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In light of Corollary B, which shows that Bir(X) contains no finite order elements, one might
wonder how far apart this is from showing that Bir(X) = {1}. (Recall that Aut(X) = {1} for these
hypersurfaces.) There are a number of related works in this vein. Any finite order element of Bir(X) is
regularizable, i.e. it is equivalent to a regular automorphism on a birational model of X. For surfaces
and for birationally rigid Fano threefolds, the regularizable automorphisms generate the birational
automorphism group (e.g. Cry(C) is generated by Aut(P?) = PGL3(C) and the Cremona involution).
Cheltsov has asked whether this holds in general [3, Conj. 1.12]. Recently, Lin and Shinder [13] proved
that this is false by showing that for n > 3, Cr,(C) is not generated by (pseudo-)regularizable elements.

Throughout the paper we consider Bir as a group, not as a group scheme. However, for non-uniruled
varieties Hanamura has several results on giving Bir a scheme structure [7, 8].

Notation. R will denote a DVR with field of fractions K = Frac R and residue field £. We will write
n for the generic point of Spec R and 0 for the closed point.

Outline. Let X be a family over R and let Z c X; be a component of the special fiber. In §1, we
first identify a subgroup E,(Z) c Birg (X, ), consisting of the birational automorphisms of the generic
fiber X, that "specialize”. We construct a specialization homomorphism

sp,:Ey(Z) - Birg(Z).

Next, we study torsion in the birational automorphism group in §2 and show that if £ is a positive
integer that is invertible in R, then the kernel of the specialization map cannot contain birational
automorphisms ¢ € 5, (Z) of order ¢ (see Proposition 2.1(3)). In §3 we degenerate to characteristic
p > 0 and take advantage of some nice properties that are satisfied by the special fiber Xj to show
that 5,(Z) coincides with Bir(X;). In particular, we use the fact (building on work of Kollar [9]
and of the first and third authors [4]) that certain p-cyclic covers in characteristic p have no bira-
tional automorphisms. This is finally applied to families of hypersurfaces to prove Theorem A and
Corollary B.
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Davesh Maulik, Aleksandr Pukhlikov, Evgeny Shinder, Burt Totaro, Ziquan Zhuang, and Susanna
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and the University of Pavia for the opportunity to visit and their warm hospitality, during which parts
of this paper were drafted.

1. THE SPECIALIZATION HOMOMORPHISM FOR Bir

The specialization homomorphism was first defined by Matsusaka and Mumford (who attribute
it to Artin) [17], and it has also appeared in the literature for surfaces [19, §3.1] [12, §2]. To our
knowledge, it has not previously been applied to systematically study birational automorphisms.

Definition 1.1 ([17, Thm I]). Let Xz be an integral flat separated scheme over R, and let Z c Xj be a
reduced irreducible component that appears with multiplicity one in the central fiber. Let ¢ € Birg (X;))
be a birational automorphism, and let I' c Xg xz Xg be the closure of the graph of ¢. We say ¢ specializes
to Z if the special fiber I') has a unique component that maps birationally to Z under both projections.

Example 1.2. In the ruled setting, a birational automorphism of X, need not specialize. For the

automorphism x — £ on the generic fiber of the constant family PL x Al - Al the special fiber Iy
p x g Yy ¢ ¢ P

has two irreducible components, each of which is contracted under one of the projections.



4 NATHAN CHEN, LENA JI, AND DAVID STAPLETON

Definition 1.3 ([5, Def. 1.1, Def. 1.5]). A normal scheme X has (separably uni-)ruled modifications if
every exceptional divisor of every normal birational modification ¥ — X is (separably uni-)ruled. A
normal scheme Xy has sustained (separably uni-) ruled modifications if there exists a generically finite
extension of DVRs R c R’ such that for every generically finite extension of DVRs R’ c §, the
normalization of X has (separably uni-)ruled modifications. Here we fix an algebraic closure of X,
and the ring extension R c R’ being generically finite means that Frac R’ is a finite algebraic extension
of K.

Proposition 1.4 (The specialization homomorphism). Let Xg be an integral flat separated scheme over
R and Z c Xy a reduced irreducible component appearing with coefficient one in the special fiber.

(1) If ¢ is a birational automorphism of X, that specializes to Z, then there are open sets U,Uy c Xp such
that each U; meets Z, ¢ gives an isomorphism between Uy and Uy, and the restriction of ¢ to Xy is an
isomorphism:

¢‘X00U1:Z N 2 ZnUs.

(2) The set of birational automorphisms that specialize to Z forms a subgroup of Birg (X, ), which we

denote 2,/ (Z). There is a specialization group homomorphism.:

sp,: By (Z)—Birg(Z).

(3) Assume X,; and Z are geometrically integral over K and k, respectively. The group Bz (Zy) is the colimit
of By (Zyr) over generically finite extensions R ¢ R' of DVRs; thus, there is an induced specialization
homomorphism:

sy Ey(Z;)~Birg(Zz).

(4) 110, IV Ex. 1.17.3] Assume that Xg is proper and has (separably uni-)ruled modifications, and that
Z is the unique irreducible component of Xy that is not (separably uni-)ruled. Then every birational
automorphism of X;, specializes to Z. That is, B, (Z) = Birg (X;).

(5) In the setting of (4), assume furthermore that Xp has sustained (separably uni-)ruled modifications;
that X, and Z are geometrically integral over K and k, respectively; and that Zz is not (separably
uni-)ruled over k. Let R c R" be a generically finite extension of DVRs. Then Bir(X,) is a subgroup
of Bir(X;,), and there is a further generically finite extension R"” c R’ of DVRs such that the diagram
commutes:

Sp,
Birg (X,;) — Biry(2)

| |

Sp,,/
BiI‘K/(Xn/) _’7> Birk/(Zk/).
In particular, there is a homomorphism

Proof- Let ¢: Xg -> Xg be the birational map over R obtained from the closure I' ¢ Xp xp Xg of the
graph of ¢. Let I be the unique component of I') mapping birationally to Z under both projections,
Ui c X the largest open subset on which $ is an isomorphism, and U; = #(U1). Each U; meets Z by
maximality, and ¢ = ¢|z as rational maps. This proves (1).

For (2), it is clear that the identity on X, specializes to the identity on Z. If ¢ specializes to Z,
then so does ¢! by exchanging the first and second projections. It remains to show that if ¢ and ¥
specialize to Z, then so does ¥ o ¢, and that the specialization of the composition is the composition
of the specializations. For this, let ¢,y € E,(Z), and let ¢y, ;: Uy 5 — Uy 5 and I’MUL&: Uyj; — Uy be
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morphisms defined on the largest open subsets on which ¢ and i, respectively, induce isomorphisms.
Let Uy = Uygn Uy g,Uh = ¢ 1 (Us), and Us = (Uy). Then each U; n Z # &, so the assertion follows
from the fact that J/|g,nz © dlvynz = (¥ © @)|vynz.

For (3), if R c R’ is a generically finite extension of DVRs, then X,/ and Z’ := Z ®; £’ are both
integral and Z' has coefficient one in the special fiber, so they satisfy the assumptions in Definition 1.1.
If T is the closure of the graph of an element of Z,(Z), then by assumption it has a unique component
mapping birationally to Z under the projections. Therefore, the base change to £’ gives a component
of the special fiber of I' ®z R’ birational to Z;/ under the projections, and there is a unique such
component since I'®z R’ — R’ is flat. This proves that E, (Z) is a subgroup of 5,/(Z").

Before showing (4), first suppose that Yz and Y} are flat integral schemes over Spec (R) such that
Yr has (separably uni-)ruled modifications, every non-(separably uni-)ruled component of ¥j appears
with coefficient one in Y), Y is proper, and Y has a unique irreducible component Z’ that is not
(separably uni-)ruled. Then any birational map ¢:Y; -» ¥,/ induces a birational map ¢o: Z -» Z’ from
some component Z = Zy of ¥ that is not (separably uni-)ruled (c.f. [10, IV Ex. 1.17]). For this claim,
first observe that the assumption on the coefficients of Y; implies that the local ring at the generic
point of every non-(separably uni-)ruled component of Yj is a DVR. Now let I" be the closure of the
graph of ¢ in Yz xg Yy, and let I'j be the unique component of Iy mapping birationally to Z’. Since Yz
has (separably uni-)ruled modifications and Z’ is not (separably uni-)ruled, then I'j maps birationally
to a component Z of ¥j, so the composition ¢o: Z -> I'j -> Z' is a birational map.

We will now apply this to Xz = Yz = X and Z = Z' to prove (4). Let U; c X be the largest open
subset on which ¢ is an isomorphism, and let Uy = ¢(U7). Note that ¢ (U n Xp) = Uy n Xy, so each
U; meets Z by maximality, and ¢ = @|z as rational maps.

For (5), let R c R be as in Definition 1.3. After replacing R’ by a localization of its integral closure
in K’ ® K" we may assume R c R” c R'. Then X, and Z' := Z;, are integral, and Z’ appears with
coefficient one in the central fiber of Xg/, so the local ring of Xg: at the generic point of Z’ is a DVR.
Thus, the normalization X}, — X/ is an isomorphism at the generic point of Z’, so on the special
fiber there is a component W mapping birationally to Z’. Now we apply (4) to obtain a specialization
map

BiI'K/(X,]/) = BiI‘K/(X,;//) - Birk/(W) = Birk/(Z,).
(5) then follows from (3). O

Let Xz be a family of smooth proper varieties. The previous proposition describes how to specialize
birational automorphisms, and one may wonder what the image of the subgroup Autg (X,)nZ,(Z) c
Birg (X,) is in Bir;(Xp). Let ¢ € Autg(X;) nE,(Z). If there is an ample divisor £ on X, such that
L and ¢*L both extend to relatively ample divisors on the family Xz, then a theorem of Matsusaka
and Mumford shows that ¢ extends to a (regular) automorphism ¢ € Autg(Xg) and that sp,(¢) is a
(regular) automorphism of Xj [17, Cor. 1]. Without this additional assumption that ¢ preserves an
ample class, one may ask:

Question 1.5. Is there a smooth proper family Xz and an element ¢ € Aut(X;) nE,(Xo) such that
sp,,(¢) € Bir(Xo) is not a regular automorphism?

In the next section, we will give an example of a family of K3 surfaces and an element ¢ € Autg (X;)
which does not extend to a regular automorphism in Autg(Xz) (Example 2.4). In our example
Aut(Xo) = Bir(Xj), so sp, (¢) is still a regular automorphism of Xj.
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2. KERNEL OF THE SPECIALIZATION HOMOMORPHISM

In this section, we study the kernel of the specialization homomorphism from §1. After regularizing
an order ¢ birational automorphism on a birational model of Xz, our argument shows that any
component of the special fiber fixed by the Z/¢Z group action must be a multiple component.

Proposition 2.1. Let Xg be an integral flat separated scheme over R and Z c Xy an irreducible component.
Let ¢ € B,(Z) be a birational automorphism of order ¢, for some integer £ > 1.

(1) There is an affine open U c Xg meeting Z on which ¢ induces an automorphism over R.
(2) If t is invertible in R, then the quotient U [(¢) exists and (U [{¢))o = (U n Z)/(sp, (¢)).
(3) If  is invertible in R, then sp, (¢) has order € in Biry(Xo). In particular, ¢ ¢ ker(sp, ).

Proof. Let ¢ € Birg(Xg) be induced by ¢, and set U = 0!} ¢'(U’), where U’ c Uy n Uy is an affine
open subset meeting Z, and U; and Us are as in Proposition 1.4(1). This shows (1).

Now let U = Spec 4, and let ¢ € Autg(A4) denote the induced automorphism. We write (-)? to
mean the submodule of ¢-invariant elements of an 4-module. The quotient Spec (4?) is integral and
normal [6, Thm. 4.16], and it remains to show that (4%) ®z k = (4 ®z k)?.

Left exactness of (-)? implies 4%/(74)? — (A®g k)? is injective. Since ¢ is an automorphism over
R and R — A is flat, we have (14)? = 7(A4%) and A?/(nA)? = (4%) ® k, where 7 is a uniformizer of
R. This shows injectivity of (4%) ®g k — (A ®g k)?. For surjectivity, let a € (A®g k)? and let @ € 4 be
a lift. Then % Yl L ¢?(a) is an element of A mapping to a € A ®g k. This shows (2).

For (3), let G = (¢) c Autg(U). Since the quotient morphism ¢:U — (U/G) is a morphism over
R, the pullback of the effective Cartier divisor (U/G )¢ on U/G is Uy [22, Tag 01WV,Tag 0C4U]. The
projection formula [14, Ch. 9 Prop. 2.11] yields ¢.[¢* ((U/G)o)] = ¢[(U/G)o]. The restriction of ¢ to
Up is thus a finite morphism of degree ¢, so the order of sp, (¢) in Bir(X,) must be £. o

Remark 2.2. Proposition 2.1(3) shows that the kernel of the specialization homomorphism does not
contain any torsion of order coprime to the characteristic of the residue field of R. In some special
cases, the kernel is even trivial: when the specialization homomorphism Pic(X5;) — Pic(Xj) is an
isomorphism and HO(Xﬁ, 7}6) = 0, Lieblich and Maulik show using the Matsusaka—Mumford theorem
[17, Cor. 1] and a deformation theory argument that the specialization homomorphism is injective
[12, §2].

However, injectivity does not hold in general. We now give a series of examples exhibiting nontrivial
elements in the kernel of the specialization map.

Example 2.3. Let £ be a field, and let P;,Py,Q; € P2(k) be points such that Py, Py, Q, are not collinear
for ¢ # 0, but P1, Py, Qo lie on a common line L. Denote the subscheme P; + P, +Q, by Y}, and consider
the linear system of conics with base locus Y;. For ¢ # O this defines the quadratic transformation
with base locus P1,Py,Q;, but on the special fiber P H’(P%,Zy, (2))" = L + |Op2(1)|. For the family
P2 x Al — Al this gives an infinite order element ¢ in the birational automorphism group of the
generic fiber whose specialization is the identity. Explicitly, one can choose coordinates so that ¢: [x :

il [x(x-19): (x - t2)y : (5 - 19)2].

It is well known that birational automorphisms on K3 surfaces extend to regular automorphisms,
so in the next example the specialization homomorphism is defined on Bir = Aut.


https://stacks.math.columbia.edu/tag/01WV
https://stacks.math.columbia.edu/tag/0C4U
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Example 2.4. Let X be a complex K3 surface of Picard rank 2 obtained as the intersection of two
divisors of type (1,1) and (2,2) in P? x P, There are two projections p;: X — P* (j = 1,2), which
induce involutions ¢; on X. By [25, Thm. 2.9], for a general such X it is known that the automorphism
group of X is the free product Aut(X) = Z/2Z+Z 27 generated by the involutions. On the other hand,
there are special examples of such K3 surfaces where the involutions commute. In the coordinates
([Xo : X1 : X2].[Yo : Y1 : Y3]) € P? x P2, one may take the complete intersection X, given by the
equations
> 4;;XY;=0 and > by XY} =0,
i,je{0.1} i,je{0,1.2}

which is smooth for general coefficients a;; and 4,;. On X, the covering involutions extend to (regular)
involutions:

1o ([Xo: X1 : X, [Yo:Y1:Ya])~» ([Xo: X1 : (-1) - Xu],[Yo: Y1 : Ya]),

t20: ([Xo: X1 : Xo],[Yo: Y1: Yo]) = ([Xo: Xa: Xo].[Yo: 112 (-1) - Ya)).
By construction, these involutions on Xy automatically commute. This shows that the birational
automorphism t1e9¢1t9 on the general K3 surface X has infinite order but specializes to the identity
on the special fiber Xj. On the special fiber, each projection p; contracts the conic over [0: 0 : 1],

so the Picard rank jumps and the covering involution does not extend to a regular involution on the
family (c.f. [12, Thm. 2.1]).

One may exhibit similar behavior on K3 surfaces of type (2,2,2) in (I]:DI)B, see [24, §3] and [21,
Prop. 3.5]. For an example with Enriques surfaces, see [1] (c.f. [10, IV Ex. 1.17.4]).

Example 2.5. In mixed characteristic (0,p), the kernel of sp, can contain p-torsion. It is not clear if
this can be accounted for by considering an additional scheme structure on Bir(X ). For instance, the
group of p-torsion geometric points of an elliptic curve is isomorphic to Z/pZ x Z/pZ in characteristic
0, but is isomorphic to Z/pZ or is trivial in characteristic p, so translating by a p-torsion point that
specializes to the identity gives such an example. Similarly one can construct examples by considering
U,y actions on a scheme in mixed characteristic (0,p). This happens when considering u,-covers of
schemes, and it will be an important tool in the next section.

3. APPLICATIONS TO BIRATIONAL AUTOMORPHISMS OF FANO HYPERSURFACES

We now give the proofs of Theorem A and Corollary B. The key ingredients used are the special-
ization homomorphism for Bir, a result of the first and third authors showing that certain p-cyclic
covers in characteristic p have no birational automorphisms [4, Cor. C], and a construction of Mori
[18] (see also [10, V.5.14.4]) that allows us to degenerate from a hypersurface to a p-cyclic cover. We
begin by recalling Mori’s construction:

Construction 3.1. Let f,g € R[x,...,%,+1] be homogeneous polynomials of degree pe and ¢, respec-
tively. Assume g? — f is not uniformly 0. Let Z = (3 - f = g — 7y = 0) c Pg(1"*%;¢). Then Z, is
n+1

isomorphic to the degree pe hypersurface (g — n?f = 0) c P}, and Z, is isomorphic to a p-cyclic
cover of the degree ¢ hypersurface (g = 0) c P{*1.

There are two different degenerations that are most useful in our case:

e A p-cyclic cover in mixed characteristic (0,p), and
e Mori’s construction in equicharacteristic 0.
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By [5, Thm. C & Ex. 1.7], these families have sustained separably uniruled modifications and sustained
ruled modifications, respectively. Therefore we may apply Proposition 1.4(5).

Proposition 3.2. Let p be a prime and let n,e > 3 be integers such that (p—1)e < n—e < pe—3. Furthermore,
assume n is even if p = 2. If X c PE1 is a very general hypersurface of degree pe, then any finite order element
of Bir(X) has order a power of p.

Proof. The inequalities in the statement of the proposition imply that over F,, a general p-cyclic
cover of a degree ¢ hypersurface in P**! has trivial birational automorphism group by [4, Cor. C]
and is not separably uniruled by [9, Lem. 7]. So it follows from [5, Thm. C], Proposition 1.4(5), and
Proposition 2.1(3) that for a very general such p-cyclic cover Z over C, Birc(Z) only contains elements
whose orders are p-powers. By Construction 3.1, there is a family of degree pe hypersurfaces over a
complex curve that degenerates to a general such p-cyclic cover. Since Z is not ruled [10, Prop. 5.12]
and the total space has sustained ruled modifications [5, Ex. 1.7], we may apply Proposition 1.4(5).
Together with Proposition 2.1(3) and the isomorphism between the geometric generic and very general
fibers of the family [23, Lem. 2.1], this gives the result for a very general degree pe¢ hypersurface over
C. |

Proof of Theorem A. Let ¢ = [[”)—ﬁ] We will first show the result for d = pe. By the comment after
Theorem A, we may assume that d < n (note that this implies n > 3p). The assumptions in the
theorem then imply that (p —1)e < n — ¢ < pe — 3, so by Proposition 3.2 any torsion element in the
birational automorphism group of a very general hypersurface of degree pe in P~*! has order a power
of p.

For d > pe we prove the result by induction, showing that the degree d -1 result implies the degree
d result. To start, consider a pencil of hypersurfaces spanned by a smooth degree d hypersurface and
a degree d — 1 hypersurface union with a hyperplane. Assume that the union of all three is an snc
divisor. Then the total space of the pencil is singular (as the dimension of the hypersurfaces is > 3)
and admits a small resolution by blowing up the hyperplane in the central fiber. After this blowup,
the localization of the family at the reducible fiber has reduced snc central fiber with two components
birational to the original ones. Thus the localized family has sustained ruled modifications by [5,
Ex. 1.7].

By induction the only finite order birational automorphisms of a very general degree d — 1 hy-
persurface have order a power of p. Moreover, it is not ruled by [9, Thm. 2], so we may apply
Proposition 1.4(5) to the above degeneration to prove the result in degree d. m]

Proof of Corollary B. Combine the results for the primes p = 2,3 in Theorem A if  is even, and consider
the primes p = 3,5 if n is odd. o
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